Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors.
نویسندگان
چکیده
We present a systematic analysis of sequence motifs found in metazoan protein factors involved in constitutive pre-mRNA splicing and in alternative splicing regulation. Using profile analysis we constructed a database enriched in protein sequences containing one or more presumptive copies of the RNA-recognition motif (RRM). We provide an accurate alignment of RRMs and structure-based criteria for identifying new RRMs, including many that lack the prototype RNP-1 submotif. We present a comprehensive table of 125 sequences containing 252 RRMs, including 22 previously unreported RRMs in 17 proteins. The presence of a putative RRM in these proteins, which are implicated in a variety of cellular processes, strongly suggests that their function involves binding to RNA. Unreported homologies in the RRM-enriched database to the metazoan SR family of splicing factors are described for an Arg-rich human nuclear protein and two yeast proteins (S. pombe mei2 and S. cerevisiae Npl3). We have rigorously tested the phylogenetic relationships of a large sample of RRMs. This analysis indicates that the RRM is an ancient conserved region (ACR) that has diversified by duplication of genes and intragenic domains. Statistical analyses and classification of repeated Arg-Ser (RS) and RGG domains in various protein splicing factors are presented.
منابع مشابه
RGG-boxes of the EWS oncoprotein repress a range of transcriptional activation domains
The Ewings Sarcoma Oncoprotein (EWS) interacts with several components of the mammalian transcriptional and pre-mRNA splicing machinery and is also found in the cytoplasm and even on the cell surface. The apparently diverse cellular functions of EWS are, however, not well characterized. EWS harbours a potent N-terminal transcriptional activation domain (the EAD) that is revealed in the context ...
متن کاملIdentification and characterization of srp1, a gene of fission yeast encoding a RNA binding domain and a RS domain typical of SR splicing factors.
The SR protein family is involved in constitutive and regulated pre-mRNA splicing and has been found to be evolutionarily conserved in metazoan organisms. In contrast, the genome of the unicellular yeast Saccharomyces cerevisiae does not contain genes encoding typical SR proteins. The mammalian SR proteins consist of one or two characteristic RNA binding domains (RBD), containing the signature ...
متن کاملRS domains contact the pre-mRNA throughout spliceosome assembly.
SR proteins are essential metazoan splicing factors that contain an RNA-binding domain and an arginine/serine-rich domain that functions to promote assembly of the spliceosome. The prevailing model over the past several years suggests that the RS domains function as protein-interaction domains. However, two new papers from Green et al. demonstrate that these RS domains directly contact the pre-...
متن کاملIdentification of an RNA binding specificity for the potential splicing factor TLS.
The TLS/FUS gene is involved in a recurrent chromosomal translocation in human myxoid liposarcomas. We previously reported that TLS is a potential splicing regulator able to modulate the 5'-splice site selection in an E1A pre-mRNA. Using an in vitro selection procedure, we investigated whether TLS exhibits a specificity with regard to RNA recognition. The RNAs selected by TLS share a common GGU...
متن کاملMolecular Evolution of Serine/Arginine Splicing Factors Family (SR) by Positive Selection
The serine-rich (SR) protein family is involved in the pre-mRNA splicing process and the DNA sequences of the corresponding genes are highly conserved in the metazoan organisms. The mammalian SR proteins consist of one or two characteristic RNA binding domains (RBD), containing the signature sequences RDAEDA and SWQDLKD and a RS (arginine/serine-rich) domain. We used the amino acid and nucleoti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 21 25 شماره
صفحات -
تاریخ انتشار 1993